Производственная вибрация

Теория

Частотный анализ

В данном случае устанавливаются нормируемые диапазоны частот в виде октавных полос со следующими среднегеометрическими частотами:

- для общей вибрации 1, 2; 4; 8; 16; 31,5; 63 Гц;
- для локальной вибрации 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц.

Нормируемыми параметрами являются среднеквадратичные значения виброскорости V_f и виброускорения a_f^2 или их логарифмические уровни $L_{v,f}$, $L_{a,f}$.

$$V_f = \sqrt{\frac{1}{T} \int_0^T V_f^2(t) dt},$$

$$a_f = \sqrt{\frac{1}{T} \int_0^T a_f^2(t) dt},$$

где T - длительность временного интервала, на котором производят усреднение.

•
$$L_{v,f} = 20 \lg \frac{v_f}{5 \cdot 10^{-8}},$$

где $5 \cdot 10^{-8} \; \mathrm{m/c}$ - опорное значение виброскорости.

•
$$L_{a,f} = 20 \lg \frac{a_f}{10^{-6}}$$
,

где $10^{-6}~{\rm M/c}^2$ - опорное значение виброускорения.

Интегральный анализ

При интегральной оценке по частоте нормируемым параметром является корректированное значение виброскорости V и виброускорения a^2 или их логарифмические уровни L_v ,, L_a , измеряемые с помощью корректирующих фильтров или вычисляемые по формулам:

$$U = \sqrt{\sum_{i=1}^{n} (U_i \cdot K_i)^2},$$

$$L_u = 10 \log \sum_{i=1}^{n} 10^{0,1 \cdot (L_{u,i} + L_{k,i})},$$

где U_i , $L_{u,i}$ - среднеквадратичные значения виброскорости или виброускорения (их логарифмические уровни) в i-ой частотной полосе; n - число частотных полос в нормируемом частотном диапазоне; K_i , $L_{k,i}$ - весовые коэффициенты для i-ой частотной полосы соответственно для абсолютных значений или их логарифмических уровней, определяемые согласно CH 2.2.4/2.1.8.566-96.

Непостоянная вибрация

При интегральной оценке вибрации с учетом времени ее воздействия нормируемым параметром является эквивалентное корректированное значение виброскорости или виброускорения $U_{\scriptscriptstyle \mbox{\footnotesize ЭКВ}}$ или их логарифмический уровень $L_{u,\scriptscriptstyle \mbox{\footnotesize ЭКВ}}$:

$$U_{\mathsf{9KB}} = \sqrt{\sum_{i=1}^{n} U_i^2 \frac{t_i}{T}},$$

$$L_{u,9KB} = 10 \lg \sum_{i=1}^{n} 10^{\frac{L_{i,u}}{10}} \frac{t_i}{T},$$

где U_i , $L_{u,i}$ - корректированные по частоте значения и уровни контролируемого параметра виброскорости $(V, \text{ м/c}; L_v, \text{ дБ})$ или виброускорения $(a, \text{ м/c}^2; L_a, \text{ дБ})$; t_i - время действия вибрации, T - общее время работы, T - общее число интервалов действия вибрации.

Физические параметры колеблющейся системы

Для случая гармонических колебаний решение дифференциального уравнения вынужденных колебаний приводит к следующей связи физических параметров колеблющейся системы:

$$V_{max} = \frac{F_{max}}{\sqrt{\mu + (m\omega - \frac{q}{\omega})^2}},$$

где V_{max} - максимальное значение мгновенной виброскорости, ;

 μ - коэффициент вязкого трения;

m - масса колеблющейся системы, ;

 $\omega=2\pi f$ - циклическая частота, где f - частота колебаний, ;

 F_{max} - максимальное значение вынуждающей силы, ;

 $\it q$ - жёсткость колеблющейся системы, .

При этом для гармонических колебаний $V=V_{max}/\sqrt{2}$, где V - среднеквадратичное значение виброскорости, .

Кроме того, для гармонических колебаний связь между среднеквадратичными значениями виброскорости V и виброускорения a, a, выражется в виде $a=\omega V=2\pi V$.

Средства индивидуальной защиты

Коэффициент ослабления вибрации: $K=10^{\Delta L/20}$

Виброускорение с учётом коэффициента ослабления вибрации: a=a/K.

Задачи

Задача №1.1

При монтаже оборудования ТЭС монтажник использует ручной перфоратор, создающий вибрацию, характеризующуюся корректированным по частоте значением виброускорения $a_{\rm корр}=4~{\rm M/c}^2$. При этом суммарное за рабочий день время работы с виброинструментом составляет 6 ч. Определить класс условий труда, если, согласно приложению 11 методики проведения СОУТ при наличии локальной вибрации, установлены следующие классы условий труда.

Наименование показателия, единица	Класс (подкласс) условий труда					
измерения	допустимый	ый вредный				опасный
	2	3.1	3.2	3.3	3.4	4
Вибрация локальная, эквивалентный корректированный уровень виброускорения, дБ	← 126	126-129	129-132	132-135	135-138	> 138

Задача №1.2

На рукоятке перфоратора по результатам специальной оценки условий труда корректированное значение виброускорения $a_f=12~{
m M/c}^2$. Этим инструментом человек работает 2 часа в день. Оценить условия труда.

Согласно СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» предельно допустимое значение эквивалентного виброускорения равно $2~{\rm M/c}^2$.

Задача №2.1

Определить допустимое время работы с ручным перфоратором корректированное по частоте виброускорение которого $a_{\rm корр}=3,5\,{\rm m/c}^2$, Если известно, что, согласно CH 2.2.4/2.1.8.566-96, допустимый уровень виброускорения составляет $126\,{\rm gB}$.

Задача №2.2

Условия из задачи 1.2, но требуется определить допустимое время работы этим перфоратором без средств защиты.

Задача №3

Определить допустимое время работы с ручным перфоратором корректированное по частоте виброускорение которого $a_{\rm корр}=4~{\rm M/c}^2$. При этом работник обеспечен вибродемпфирующими рукавицами, снижающими уровень виброускорения на $6~{\rm д}$ Б. Если известно, что, согласно CH 2.2.4/2.1.8.566-96, допустимый уровень виброускорения составляет $126~{\rm д}$ Б.

Last update: 2024/10/28 06:44

Задача №4

Ручной перфоратор массой m=1,5 кг имеет пружинный виброизолятор жёсткостью $q=1,06\cdot 10^5$ H/м и создаёт вибрацию частотой f=12,5 Γ ц, амплитуда возмущающей силы $F_{max}=50$ H. Пренебрегая демпфированием, определить среднеквадратичное значение виброускорения, оценить условия работы перфоратором (согласно CH 2.2.4/2.1.8.566-96 $a_{\pi 0 \Pi}(f=12,5$ $\Gamma_{\Pi})=1,4$ м/с 2), определить требуемую жёсткость виброизолятора.

Задача №5

Рассчитать площадь $S,\ {
m cm}^2$, и высоту $L,\ {
m cm}$, резиновых виброизоляторов устанавливаемых по углам опорной рамы, на которой расположен электродвигатель с частотой вращения $n=1000\ {
m of/muh}$. Масса установки с опорной рамой $m=300\ {
m kr}$. Динамический модуль упругости резины $E=40\cdot 10^5,\ {
m H/m}^2$, допустимая нагрузка $\sigma=10^5,\ {
m H/m}^2$.

From:

https://jurik-phys.net/ - Jurik-Phys.Net

Permanent link:

https://jurik-phys.net/lifesafety:seminars:vibro

Last update: 2024/10/28 06:44

