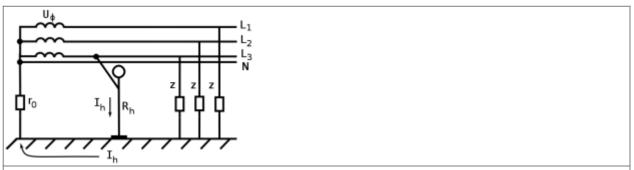
Основы электробезопасности

Теория

Однофазное прикосновение человека к электрической сети

Случай трёхпроводной трёхфазной сети с изолированной нейтралью (см. рисунок).


Прикосновение человека к проводу трёхфазной трёхпроводной сети с изолированной нейтралью. Случай нормального режима короткой воздушной сети с малой ёмкостью проводов относительно земли.

Здесь U_{Φ} - фазное напряжение сети, В; R_h - сопротивление тела человека, Ом; r - активное сопротивление изоляции проводов, Ом.

В данном частном случае, когда ёмкостное сопротивление велико, а активное симметрично для всех фаз, сила тока проходящего через человека I_h определится по следующей формуле:

$$I_h = \frac{U_{\Phi}}{R_h + \frac{r}{3}}, \text{ [A]}.$$

Случай четырёхпроводной трёхфазной сети с заземлённой нейтралью (см. рисунок).

Прикосновение человека к фазному проводу четырёхпроводной сети с заземлённой нейтралью. Нормальный режим работы сети.

Здесь z - модуль комплексного сопротивления (полное сопротивление) проводов относительно земли, Ом; r_0 - сопротивление заземления нейтральной точки трансформатора, Ом. Согласно ПУЭ r_0 не должно превышать 4 - 10 Ом.

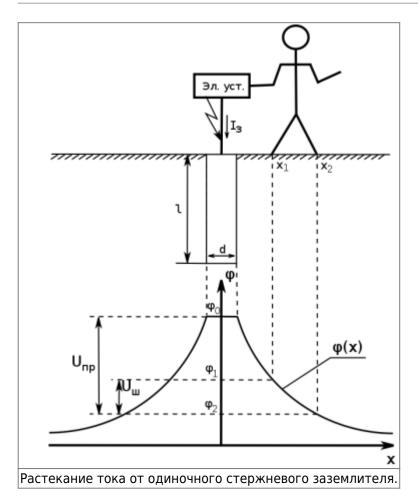
В данном случае, сила тока проходящего через человека I_h определяется наличием заземления нейтральной точки трансформатора с малым сопротивлением r_0 и может быть вычислена по следующей формуле:

$$I_h = \frac{U_{\Phi}}{R_h + r_0}, [A].$$

При расчётах электробезопасности, если не оговорено отдельно, сопротивление человека R_h принимается равным $1000~{\rm O}_{\rm M}$, которое приближенно соответствует сопротивлению внутренних органов человека.

Одиночный стержневой заземлитель

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (Π УЭ 1.7.15).


Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю ($\Pi Y \ni 1.7.26$).

Сопротивление заземления r_3 — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом. В общем случае, сопротивление заземления зависит от формы, площади электрического контакта заземлителя с грунтом и удельного электрического сопротивления грунта.

Стекание тока в землю сопровождается возникновением на заземлителе, в земле вокруг, а следовательно, и на поверхности грунта поля растекания тока $\varphi(x)$.

При этом величина потенциала на поверхности грунта зависит от формы и размеров заземлителя, расстояния до заземлителя, величины стекающего тока, удельного сопротивления грунта.

Схема растекания тока от одиночного стержневого заземлителя с глубиной заложения $l,\,\,\mathrm{M},\,\mathrm{M}$ диаметром $d,\,\,\mathrm{M}$ представлена на рисунке:

Здесь, U_{m} , U_{mp} - напряжения шага и прикосновения, соответственно.

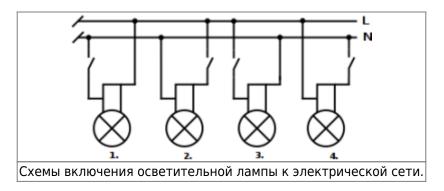
Сопротивление одиночного стержневого заземлителя:

$$r = \frac{\rho}{2\pi l} \ln \frac{4l}{d}, \text{ [OM]}.$$

Здесь ρ - удельное сопротивление грунта, $O_{\mathbf{M}} \cdot \mathbf{m}; l$ - глубина заложения стержневого заземлителя, $\mathbf{M}; d$ - диаметр заземлителя, \mathbf{M} .

Потенциал на поверхности земли от одиночного стержневого заземлителя:

$$\varphi(x) = \frac{I_3 \rho}{2\pi l} \ln \left[\frac{\sqrt{x^2 + l^2} + l}{x} \right], [B].$$

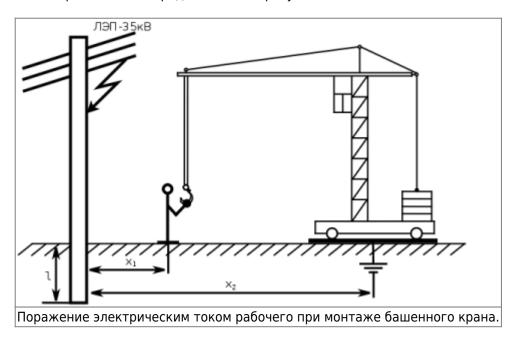

Здесь I_3 - ток, стекающий в землю при коротком замыкании фазного проводника на корпус оборудования, A; x - расстояние до интересующей точки, M.

Подробнее см. Долин П.А. Основы техники безопасности в электроустановках.

Задачи

Задача №1

Какая схема включения осветительной лампы к электрической сети является наименее опасной, наиболее опасной? Почему?


Задача №2

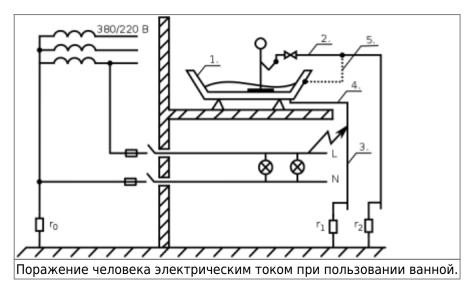
На строительной площадке, монтажник выполняя задание по установке башенного крана вблизи линий электропередач (ЛЭП), коснулся рукой крюка и был смертельно поражён электрическим током. Работа велась в дождливую ветреную погоду без оформления наряда - допуска. Кран был заземлён и стоял без электрической проводки. В это время на рядом расположенной опоре ЛЭП - 35 кВ от ветровой нагрузки и плохого состояния изоляционной подвески произошло замыкание фазного проводника на металлическую опору.

Определите напряжение прикосновения $U_{\rm np}$ и ток, прошедший через человека I_h , если известны следующие данные:

- ullet Ток, стекающий в землю при замыкании фазного проводника на металлическую опору $I=27,6~{
 m A.}$
- Глубина заложения опоры в землю $l=2\,$ м.
- Удельное сопротивление грунта $\rho = 210 \; \mathrm{Om} \cdot \mathrm{m}$.
- Расстояние от опоры до рабочего $x_1 = 4 \, \mathrm{m}$.
- ullet Расстояние от опоры до заземлителя крана $x_2=12~{
 m M}.$
- Сопротивление тела человека $R_h = 800 \, \, \mathrm{Om}$.

Схема происшествия представлена на рисунке:

Задача №3


В ванной комнате жилого дома произошло смертельное поражение человека электрическим током. Пострадавший (см. рис.), стоя в ванной (1) с небольшим количеством воды, взялся рукой за водопроводную трубу (2) и был поражён током. Электрическое напряжение возникло на сливном стояке (3) в результате повреждения изоляции фазного проводника L и контакта его со стояком в другом жилом помещении. Ванная и сливная труба (4) не имели контакта с водопроводной трубой (2), что и обусловило наличие напряжения между ванной (1) и трубой (2), которое воздействовало на пострадавшего.

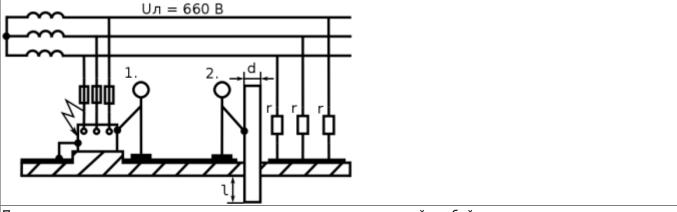
Напряжение возникло из-за отсутствия металлического патрубка (5), соединяющего ванну с водопроводной трубой (2), а также неудовлетворительной эксплуатации электропроводки и отсутствия контроля за состоянием изоляции в проводниках L и N в жилых помещениях, высокого сопротивления заземления сливного стояка.

Определите ток I_h , прошедший через человека, если известны следующие данные:

- Фазное напряжение электрической сети $U_{\Phi} = 220\,$ В.
- Сопротивление заземлённой нейтрали трансформатора $r_0 = 8 \, \, \mathrm{Om}$.
- Сопротивление заземления сливного стояка $r_1 = 200 \, \, \mathrm{Om}.$
- Сопротивление заземления водопроводной трубы $r_2 = 4 \, \, \mathrm{Om}$.
- ullet сопротивление тела человека $r_h = 1000\,\,{
 m O}{
 m M}.$

Схема происшествия представлена на рисунке:

Задача №4


Корпус электродвигателя воздушного вентилятора, установленного на бетонное основание, соединён заземляющим проводником с металлическим листом, на котором стояли двое рабочих. При этом один из них касался корпуса электродвигателя, а другой - стальной трубы, вертикально забитой в землю и не имеющей связи с металлическим листом. В это время произошло замыкание обмотки работающего двигаетля на его корпусе (см. рис.).

Определите токи $I_{h,1}$, $I_{h,2}$ прошедшие через работников, если известны следующие данные:

• Короткая трёхфазная сеть с изолированной нейтралью. Линейное напряжение которой $U_{\pi}=660~\mathrm{B}.$

- ullet Сопротивление изоляции проводников относительно земли одинаковы $r=1800~{
 m O_M}.$
- Сопротивление человека $r_h = 1000\,\,{
 m O}{
 m M}.$
- Удельное сопротивление грунта $ho = 200~{
 m O}{
 m M}\cdot{
 m M}$.
- ullet Заглубление трубы в землю $l=2\,{
 m _{M}}.$
- Диаметр трубы d = 0,05 м.

Схема происшествия представлена на рисунке:

Поражение человека током при его соприкосновении со стальной трубой при замыкании на корпус двигателя.

From:

https://jurik-phys.net/ - Jurik-Phys.Net

Permanent link:

https://jurik-phys.net/lifesafety:seminars:electro

Last update: 2025/05/27 20:43

