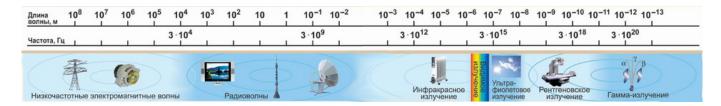
Защита от электромагнитных полей (ЭМП)

Шкала электромагнитных волн


Электромагнитное поле - особый вид материи, наряду с веществом, посредством которого происходит взаимодействие.

- не обладает массой покоя;
- непрерывно, в одной точке могут находиться поля характеризующиеся различными свойствами;

Электромагнитное излучение (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Виды электромагнитных волн

- радиоволны, f до 300 ГГц, λ до 1 мм;
- терагерцовое излучение, $f \in [10^{11}; 10^{13}] \; \Gamma$ ц, λ , соответственно, от 3 до $0,03 \; \text{мм};$
- инфракрасное излучение, λ от 0.75 мкм до 1000 мкм;
- видимый свет:
 - \circ длинноволновая граница $\lambda~760-780~{
 m HM}$, $f~385-395~{
 m T}\Gamma$ ц;
 - \circ коротковолновая граница $\lambda 380 400$ нм, f 750 790 ТГц;
- ультрафиолетовое излучение, λ от 400 до $10\,$ нм; f от $7,5\cdot 10^{14}$ до $3\cdot 10^{16}\,$ $\Gamma \mathrm{H}$;
- ullet рентгеновское и гамма-излучение λ от $10~{
 m HM}$ и менее.

Параметры электромагнитного поля

Электрическое поле - создаётся *неподвижными электрическими зарядами*. Оказывает силовое воздействие на неподвижные заряженные частицы.

ullet Напряжённость электрического поля \overrightarrow{E} [$\mathbf{B}/_{\mathbf{M}}$]; $\overrightarrow{F}=\overrightarrow{E}\cdot \overrightarrow{q}$

Магнитное поле - создаётся *движущимися эл. зарядами* и *намагниченными телами*. Оказывает силовое воздействие на движущийся электрический заряд, намагниченные тела.

ullet Напряжённость магнитного поля \overrightarrow{H} [A/M]; $\overrightarrow{F} = \overrightarrow{H} \cdot Il$:

Электромагнитное поле (в форме электромагнитных волн) создаётся ускоренно движущимися электрическими зарядами, распространяется со скоростью света $3 \cdot 10^8 \ \mathrm{m/c}$, в процессе распространения магнитное поле порождает электрическое и обратно. Частота колебаний электромагнитных волн определяется и совпадает с частотой колебания электрического заряда.

Для ЭМП характерен перенос массы и энергии, поле оказывает давление на поглощающую поверхность.

Last update: 2020/05/23 21:59

Перенос энергии характеризуется интенсивностью излучения $I,\ \mathrm{Bt/m}^2$, которая может быть выражена через параметры электрического и магнитного полей (вектор Умова-Пойнтинга) $I=[\overrightarrow{E}\times\overrightarrow{H}]$.

Радиочастотный диапазон

По классификации, предложенной в 1975 году международным консультативным комитетом по радио (МККР), спектр частот от 3 Гц до 3 ТГц разделен на 12 диапазонов 0.3*10N Гц до 3*10N, где N - номер диапазона.

Частоты, лежащие в интервале от 3 кГц до 3 ТГц, принято называть радиочастотами.

Некоторые характерные частоты

- 50 Гц промышленная частота;
- 62 108 МГц радиовещание с частотной модуляцией;
- 900, 1800, 2100 МГц сотовая связь;
- 2.4, 5.0 ГГц wi-fi, bluetooth, микроволновые печи.

Виды зон воздействия ЭМП

В зависимости от размера излучающей системы L и длины волны λ пространство вокруг антенны разбивают на три зоны:

- ближнюю зону (зона индукции);
- промежуточную зону (зона интерференции);
- дальнюю зону (волновая зона, или зона Фраунгофера).

Такое деление связано с тем, что отдельные компоненты поля имеют различную зависимость от расстояния. Следовательно, в каждой из зон ЭМП характеризуется своим соотношением напряженностей \overrightarrow{E} и \overrightarrow{H} полей. Переход между зонами плавный.

Ближняя зона

Критерий: $r<<\lambda/2\pi$.

В ближней зоне поле не имеет волнового характера, средний поток энергии равен нулю, переноса энергии не происходит, излучение отсутствует. Это означает, что в ближней зоне поля, запасающие энергию, преобладают над излучающими полями. При этом $\overrightarrow{F} >> \overrightarrow{H}$.

Промежуточная зона

Критерий: $r \approx \lambda/2\pi$. В промежуточной зоне поле имеет сложный характер. Присутствуют все компоненты поля.

Дальняя зона

Критерий: $r >> \lambda/2\pi$. В дальней зоне поле представлено сформировавшейся электромагнитной волной. Напряженности \overrightarrow{E} и \overrightarrow{H} изменяются во времени синфазно, а в пространстве сдвинуты друг относительно друга на $\pi/2$.

Примеры зон воздействия ЭМП

- Промышленная частота $f=50~\Gamma$ ц, $\lambda=6000~{
 m km}$, следовательно, на любом удалении от источника работник будет находиться в ближней зоне.
- $f \in [0, 03, 300 \text{ M}\Gamma \pi]$, возможно нахождение работника в промежуточной зоне.
- При $f > 300~{
 m M}\Gamma$ ц имеет место быть преимущественно волновая зона.

Нормируемые параметры ЭМП различных частот

Поле	Частота	Нормируемый параметр
Электростатическое	0 Гц	\overrightarrow{E} , B/M
Постоянное магнинтн.	0 Гц	\overrightarrow{H} , A/M \overrightarrow{B} , T π
	0,1 Гц - 300 Гц	$\overrightarrow{E},\; \mathrm{B/M}$ $\overrightarrow{H},\; \mathrm{A/M}$ или $\overrightarrow{B},\; \mathrm{T\pi}$
	0,3 кГц - 300 МГц	$\overrightarrow{E},\; \mathrm{B/m}; \ \overrightarrow{H},\; \mathrm{A/m}$ или $\overrightarrow{B},\; \mathrm{T\pi}$
	300 МГц - 300 ГГц	\overrightarrow{I} , Bt/m ²

Длительность пребывания человека в зонах влияния источников с f от $0,3~{\rm k}\Gamma{\rm m}$ до $300~{\rm M}\Gamma{\rm m}$ оценивается:

- ullet энергетической экспозицией (энергетической нагрузкой) по \overrightarrow{E} : $\Im \Im_E = E^2 T$;
- энергетической экспозицией по \overrightarrow{H} : $\Im \Im_H = H^2T$; энергетической экспозицией по \overrightarrow{I} : $\Im \Im_I = IT$,

Last update: 2020/05/23 21:59

где T - время пребывания в зоне облучения за рабочую смену, ч.

Установленные нормы

Промышленная частота

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях. Санитарноэпидемиологические правила и нормативы» с изменениями устанавлены следующие нормы:

- $E \leq 5$ к $\mathrm{B/m}$, $T_{\mathrm{доп}} = \infty$ ч; $E \in (5;20]$ к $\mathrm{B/m}$, $T_{\mathrm{доп}} = \frac{50}{E} 2$ ч;
- $E \in (20; 25]$ кВ/м; $T_{\text{доп}} = 10$ мин;
- $E > 25 \ {\rm kB/m}$ работа без средств защиты не допускается.

Здесь - напряженность ЭП в контролируемой зоне, $\kappa B/M$; - допустимое время пребывания в ЭП при соответствующем уровне напряженности, ч.

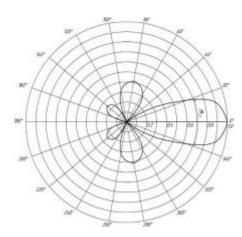
Время пребывания персонала в течение рабочего дня в зонах с различной напряженностью ЭП $T_{
m привед}$ вычисляют по формуле:

 $T_{\text{привед}} = 8\left(rac{t_{E1}}{T_{ ext{доп},E1}} + rac{t_{E2}}{T_{ ext{доп},E2}} + \cdots + rac{t_{En}}{T_{ ext{доп},En}}
ight)$, где $T_{ ext{привед}}$ - приведенное время, эквивалентное по биологическому эффекту пребыванию в ЭП $E=5~{
m kB/m}$; t_{En} - время пребывания в контролируемой зоне с напряженностью E_n ; $T_{\mathrm{доп},En}$ - допустимое время пребывания для соответствующих контролируемых 30H.

СВЧ излучение

Рабочие места

 $I_{ extsf{доп}} = \Im \Im_I/t$, где t - время выполнения работ, ч; $\Im \Im_I$ - энергетическая экспозиция по интенсивности СВЧ излучения, $rac{\mathbf{B_T}}{\mathbf{M}^2} \cdot \mathbf{q}$; $I_{ extsf{доп}}$ - допустимая плотность потока энергии, $\mathbf{B_T/M}^2$.


Население

 $I_{
m доп} = 0, 1 \; {
m B_T/_M}^2$ - значение, характерное для большинства источников СВЧ излучения (теле- и радио вышки, микроволновые печи на расстоянии $0,5\,\mathrm{M}$ и т.д.

Диаграмма направленности СВЧ излучения

Для источников СВЧ излучения (антенн) характерно наличие выделенных направлений излучения, в которых интенсивность излучения выше среднего значения. Иллюстрируется данный факт с помощью так называемой «диаграммы направленности».

5/6

Когда необходимо знать особенности излучения/поглощения не только на плоскости, но и в пространстве, строят как горизонтальную, так и вертикальную диаграмму направленности.

Область применения ЭМП

- Десятки и сотни Гц. Односторонняя связь с подводными лодками.
- Десятки кГц десятки МГц. Радиосвязь на значительных расстояниях.
- Сотни МГц. Телевидение, высококачественная радиосвязь с частотной модуляцией.
- *Единицы ГГц*. Радиолокация, телевидение, сотовая связь, передача данных (интранет/интернет), микроволновые печи.
- *Десятки ГГц*. Высокоскоростная радиорелейная связь, метеорологические радиолокаторы, медицина.
- Сотни ГГц. Сканирование багажа и людей, томографы верхних мягких тканей и т.д.

Воздействие ЭМП на человека

Выделяют два механизма воздействия ЭМП на человека.

- 1. Тепловой, при относительно высоких уровнях облучающего электромагнитного поля.
 - Локальный нагрев тканей.
- 2. **Не тепловой** или **биологический**, проявляющийся при малых уровнях электромагнитного поля. Механизмы подобного взаимодействия изучены мало.
 - Изменение функционального состояния центральной нервной системы.
 - Нарушения в работе сердечно-сосудистой системы.
 - Снижение показателей крови (кол-во лейкоцитов, тромбоцитов, эритроцитов).
 - Влияние на половую функцию женщин, на развитие эмбриона

Защита от ЭМП

- Экранирование источника электромагнитного излучения или же объекта защиты.
- При наличии источника СВЧ излучения, расположение рабочих мест в направлении наименьшей интенсивности излучения.
- Удаление источников излучения из рабочей зоны.
- Конструктивное совершенствование оборудования с целью снижения используемых уровней ЭМП, общей потребляемой и излучаемой мощности оборудования.
- Ограничение времени пребывания операторов или населения в зоне действия ЭМП.

Last update: 2020/05/23 21:59

From:

https://jurik-phys.net/ - Jurik-Phys.Net

Permanent link:

https://jurik-phys.net/lifesafety:factory:emp

Last update: **2020/05/23 21:59**

