
2026/01/10 06:40 1/12 Настройка окружения под Web

Jurik-Phys.Net - https://jurik-phys.net/

Настройка окружения под Web

Node.js

Node Version Manager

Для управления установленной версией Node.js рекомендуется использовать Node Version Manager.

Установка или обновление nvm (версия 0.39.3):

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/install.sh | bash

wget -qO- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.3/install.sh | bash

Открыть новое окно терминала для загрузки установленных переменных окружения и выполнить

nvm --version

Установка Node.js

Определение актуальной версии на сайте проекта Node.js или через nvm командой:1.

nvm ls-remote

Установка требуемой версии node.js:2.

nvm install 18.16.1

Проверка установки в новом окне терминала:3.

node --version

Docker

Учебные материалы

Экосистема Docker (DigitalOcean):

знакомство с общими компонентами;
обзор контейнеризации;
сетевое взаимодействие;
распределение задач и оркестровка;
обнаружение сервисов и распределённые хранилища конфигураций.

Изучаем Docker (Хабр):

https://github.com/nvm-sh/nvm
https://nodejs.org/en
https://www.digitalocean.com/community/tutorials/docker-ru
https://www.digitalocean.com/community/tutorials/docker-1-ru
https://www.digitalocean.com/community/tutorials/docker-ru-992094e0-5e33-49a5-b30f-f9bfa371aeab
https://www.digitalocean.com/community/tutorials/docker-scheduling-orchestration-ru
https://www.digitalocean.com/community/tutorials/docker-service-discovery-distributed-configuration-stores-ru

Last
update:
2024/02/13
14:15

itechnology:web_develop:environment https://jurik-phys.net/itechnology:web_develop:environment

https://jurik-phys.net/ Printed on 2026/01/10 06:40

часть 1: основы;
часть 2: термины и концепции;
часть 3: файлы Dockerfile;
часть 4: уменьшение размеров образов и ускорение их сборки;
часть 5: команды;
часть 6: работа с данными.

Официальное руководство:

Основные консольные команды

Основные компоненты и инструменты

Docker Engine - ядро, базовый компонент, отвечающий за создание и запуск контейнеров.
Обычно под Docker'ом подразумевают именно Docker Engine. Существует две версии Docker
Engine: проприетарная (Docker Engine Enterprise) и открытая (Docker Engine Community).

Docker Desktop - предоставляет изолированное окружение для запуска Docker Engine, а также
графический интерфейс для создания, запуска и управления контейнерами. Особенностью
является то, что запуск контейнеров происходит внутри виртуальной машины как в Windows,
MacOS, так и в Linux. В последнем случае не рекомендуется устанавливать Docker Desktop без
веских причин.

Docker CLI tool - набор инструментов командной строки, которые используются для
взаимодействия с Docker Engine с целью запуска контейнеров, создания новых образов и т.д.

Docker Compose - инструмент работы с многоконтейнерными приложениями. Выполняет
команды, описываемые в файле docker-compose.yml для, например, сборки нескольких
контейнеров.

Docker Registry - облачное хранилище образов контейнеров, позволяет создавать контейнеры на
основе представленных в реестре образов. Примером может служить публичный реестр образов
Docker Hub , используемый при работе с Docker по умолчанию.

Безопасность

Docker контейнер, являющийся с точки зрения хост-системы процессом, всегда запускается от
пользователя root, при этом внутри контейнера по умолчанию также используется root пользователь.
Этим обусловлено повышенное внимание к требованиям безопасности при использовании docker'а.

Способы повышения привилегий для запуска контейнера:

Добавление пользователя в группу docker. Данный способ категорически не рекомендуется,
т.к. фактически пользователь наделяется root-правами.
Пользователь из группы docker может запустить контейнер (в нём он будет root), примонтировать
(опцией -v) часть файловой системы хоста внутрь контейнера и модифицировать её каким угодно
способом. Видео с демонстрацией уязвимости по ссылке .

Использование sudo - рекомендованный способ. В Debian'е sudo необходимо установить и
настроить. Установка:

https://habr.com/post/438796/
https://habr.com/post/439978/
https://habr.com/post/439980/
https://habr.com/post/439980/
https://habr.com/post/440658/
https://habr.com/post/440660/
https://habr.com/post/441574/
https://docs.docker.com/engine/reference/commandline/cli/
https://hub.docker.com/
https://www.youtube.com/watch?v=ZYgWUktFDg4

2026/01/10 06:40 3/12 Настройка окружения под Web

Jurik-Phys.Net - https://jurik-phys.net/

apt install sudo

Для настройки достаточно добавить пользователя в группу sudo:

usermod –a –G sudo user_name
или
adduser user_name sudo

Изменения вступят в силу после повторной авторизации пользователя в системе. Если
пользователь user_name имеет доступ sudo, то на выходе команды будет root:

sudo whoami

О дополнительных мерах усиления безопасности при использовании docker контейнеров см. ссылку.

Установка в Debian

Для свободной установки доступно несколько вариантов:

docker.io - название пакета в репозитории дистрибутивов в основанных на Debian;
docker-ce - официальная общественная (community edition) версия Docker'а.

Версия из репозитория лучше интегрирована в систему, более предсказуемо обновляется, но может не
иметь новых возможностей официальной версии, рекомендуется использовать официальную версию,
чтобы лишний раз не наступать на подводные камни возможной несовместимости двух версий.

Шаг №1. Удаление версии из репозитория

apt purge docker docker.io docker-compose

Шаг №2. Установка пакетов для работы с репозиториями

Скорее всего данные пакеты в системе уже будут установлены

apt install ca-certificates curl gnupg lsb-release

Шаг №3. Добавление официального GPG ключа Docker репозитория в систему

curl -fsSL https://download.docker.com/linux/debian/gpg | gpg --no-default-keyring
--keyring gnupg-ring:/etc/apt/trusted.gpg.d/docker-pub.gpg --import
chmod 644 /etc/apt/trusted.gpg.d/docker-pub.gpg

Шаг №4. Добавление репозитория в систему

echo "deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/docker-pub.gpg]

https://habr.com/ru/companies/first/articles/706764/

Last
update:
2024/02/13
14:15

itechnology:web_develop:environment https://jurik-phys.net/itechnology:web_develop:environment

https://jurik-phys.net/ Printed on 2026/01/10 06:40

https://download.docker.com/linux/debian $(lsb_release -cs) stable" | tee
/etc/apt/sources.list.d/docker.list > /dev/null

Шаг №5. Обновление списка доступных пакетов

apt update

Шаг №6. Установка Docker'а

apt install docker-ce

При этом будут установлены все необходимые компоненты: containerd.io, docker-compose-plugin и др.

Шаг №7. Проверка статуса Docker сервиса

systemctl status docker

Шаг №8. Запуск первого контейнера

sudo docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
719385e32844: Pull complete
Digest: sha256:dcba6daec718f547568c562956fa47e1b03673dd010fe6ee58ca806767031d1c
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:

2026/01/10 06:40 5/12 Настройка окружения под Web

Jurik-Phys.Net - https://jurik-phys.net/

 https://docs.docker.com/get-started/

Настройка

Настройка Firewall

Если межсетевой экран в хост системе использует правила фильтрации по умолчанию, то Docker при
установке настроит возможность проброса портов из контейнера в хост систему, а также обеспечит
контейнеры выходом в интернет.

Использование собственных правил фильтрации и/или утилит, реализующих удобную генерацию правил
фильтрации, скорее всего, потребует самостоятельной настройки данных возможностей.

Проброс портов. При установке Docker'а в хост системе появляется сетевой интерфейс docker0, для
которого необходимо разрешить устанавливать входящие соединения:

iptables -I INPUT -i docker0 -j ACCEPT
iptables -I OUTPUT -o docker0 -j ACCEPT

Для FireHol'а правила будут выглядеть следующим образом:

interface docker0 DockerNET
 client all accept
 server all accept

Интернет для контейнера. Для работы интернета внутри контейнера необходимо настроить NAT для
интерфейса docker0:

iptables -I FORWARD -i docker0 -o eth0 -j ACCEPT
iptables -I FORWARD -i eth0 -o docker0 -j ACCEPT
iptables -P FORWARD DROP
iptables -t nat -I POSTROUTING -s 172.17.0.1/16 -o eth0 -j MASQUERADE

Здесь eth0 - внешний сетевой интерфейс с выходом в интернет, 172.17.0.1/16 - подсеть Docker'а по
умолчанию. Соответствующая настройка NAT через FireHol:

router Wan-to-Docker inface eth0 outface docker0
 route all accept
router Docker-to-Wan inface docker0 outface eth0
 route all accept

Дополнительно о совместной работе FireHol'а и Docker'а см. обсуждение на GitHub'е; об особенностях
работы Docker'а с iptables в статье по ссылке.

Проверка проброса портов

sudo docker run -p 8000:80 ubuntu/apache2

Переход в хост системе по адресу http://localhost:8000 должен показать «Apache2 Default Page»

https://habr.com/ru/articles/333874/#seti-tipa-most-bridge
https://en.wikipedia.org/wiki/FireHOL
https://en.wikipedia.org/wiki/FireHOL
https://github.com/firehol/firehol/issues/114
https://codepoetry.ru/post/docker-user-iptables/

Last
update:
2024/02/13
14:15

itechnology:web_develop:environment https://jurik-phys.net/itechnology:web_develop:environment

https://jurik-phys.net/ Printed on 2026/01/10 06:40

Проверка интернета в контейнере

Список запущенных контейнеров

docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
6eed6a35de0c ubuntu/apache2 "apache2-foreground" 24 hours ago Up 51 minutes
0.0.0.0:8000->80/tcp, :::8000->80/tcp cranky_bartik

Подключение к запущенному контейнеру либо через его ID «6eed6a35de0c», либо через NAME
«cranky_bartik»

sudo docker exec -it cranky_bartik /bin/bash

В оболочке контейнера попытаться обновить список доступных пакетов:

root@6eed6a35de0c:/# apt update

При наличии интернета в контейнере начнётся стандартное обновление списка доступных пактов.

Реестр DockerHub

Docker Hub — это публичный реестр настроенных образов, которые можно использовать для быстрой
контейнеризации своих приложений с помощью Docker

Регистрация. Для взаимодействия с публичным реестром DockerHub требуется учётная запись, создать
которую можно по ссылке.

Авторизация. Для взаимодействия с DockerHub из консоли необходимо авторизоваться с помощью
команды:

sudo docker login

Также авторизоваться можно на сайте DockerHub'а.

Выход из реестра, соответственно:

sudo docker logout

Поиск образов. Для поиска публичных образов в DockerHub'е служит команда:

sudo docker search ubuntu

Здесь «ubuntu» - произвольное имя искомого docker-образа. Результаты поиска можно фильтровать,
например, по числу звёзд и принадлежности к разработчикам ПО:

docker search --filter is-official=true --filter stars=99 ubuntu

https://hub.docker.com/
https://hub.docker.com/signup
https://hub.docker.com/
https://hub.docker.com/

2026/01/10 06:40 7/12 Настройка окружения под Web

Jurik-Phys.Net - https://jurik-phys.net/

Дополнительно при поиске через сайт DockerHub можно узнать общее число скачиваний образа.

Работа с docker-образом

Docker-образ представляет собой неизменяемую основу (файловая система, метаданные и настройки)
на базе которой, создается и запускается Docker-контейнер, являющийся запущенным экземпляром
docker-образа.

Скачать из реестра. После поиска необходимого образа, например ubuntu/apache2, его можно
загрузить:

sudo docker pull ubuntu/apache2

Получить список образов. Доступные локально образы:

sudo docker images

Удалить образ. Удалить локальный образ «hello-world»:

sudo docker image rm hello-world
or
sudo docker rmi hello-world

Удаление доступно, когда к образу не прикреплён какой-либо контейнер.

Создание docker-образа:

на базе файла Dockerfile

sudo docker build -t you_image_name Dockerfile .

из контейнера

sudo docker commit container you_image_name

Передача переменных окружения в контейнер:

sudo docker run --name "openapi-editor" -d -p 1010:8080 -e
URL_SWAGGER2_GENERATOR=null -e URL_OAS3_GENERATOR=null swaggerapi/swagger-editor

Здесь запускается контейнер с Swagger Editor'ом, в котором отключены функции генерации кода.

Работа с docker-контейнером

Получить список контейнеров. Получить список всех локально существующих контейнеров. Параметр
«-a» выведет полный список контейнеров, включая со статусом «Exited», параметр «-s» покажет
соответвтвующий размер.:

sudo docker ps -as

https://hub.docker.com/search?q=ubuntu

Last
update:
2024/02/13
14:15

itechnology:web_develop:environment https://jurik-phys.net/itechnology:web_develop:environment

https://jurik-phys.net/ Printed on 2026/01/10 06:40

Создать и запустить контейнер:

создается новый контейнер на базе docker-образа «ubuntu/apache2» c именем «container-apach2»;
запускается в фоне с выводом в терминал container id.
доступ к 80-му порту веб-сервера apache2 из контейнера предоставляется через 1010 порт
системы на которой запущена docker-инфраструктура

sudo docker run --name "container-apache2" -d -p 1010:80 ubuntu/apache2

Создать и запустить контейнер в интерактивном режиме

создается новый контейнер на базе docker-образа «ubuntu/apache2» c именем «container-apach2»;
в терминале появляется командная строка оболочки контейнера

sudo docker run -it --name "container-apache2" ubuntu/apache2 /bin/bash

Запустить существующий контейнер:

sudo docker start container-apach2

Установить автозапуск контейнера:
Использовать опцию –restart policies, где параметр policies может принимать следующие
значения:

no - не перезапускать контейнер автоматически. (по умолчанию)
on-failure - перезапускать контейнер, если он завершает работу из-за ошибки, которая
проявляется в виде ненулевого кода выхода.
always - всегда перезапускать контейнер, если он остановлен. Если он остановлен вручную, он
перезапускается только при перезапуске демона Docker или перезапуске самого контейнера
вручную.
unless-stopped - аналогично always, за исключением того, что когда контейнер остановлен
(вручную или иным образом), он не перезапускается даже после перезапуска демона Docker.

Первый запуск контейнера:

sudo docker run -d --restart unless-stopped <image>

Созданные ранее контейнеры:

sudo docker update --restart unless-stopped <container>

Выполнить команду внутри контейнера:

запуск команды «ls -l /» в контейнере с именем «container-apache2» без интерактивного режима:

sudo docker exec container-apache2 ls -l /

запуск интерактивного терминала внутри контейнера с именем «container-apache2»

2026/01/10 06:40 9/12 Настройка окружения под Web

Jurik-Phys.Net - https://jurik-phys.net/

sudo docker exec -it container-apache2 /bin/bash

Перезапустить контейнер:

sudo docker restart %container_name%

Остановить контейнер. Процесс в контейнере получает сигнал SIGTERM и через некоторое время
SIGKILL. Остановка контейнера эквивалентна штатному выключению системы при обработке процессом
сигнала SIGTERM и отключению питания, если процесс получает сигнал SIGKILL.

sudo docker stop container-apache2

Удалить контейнер:

удаление происходит без подтверждения, контейнер должен быть остановлен:

sudo docker rm "container-apache2"

удалить все контейнеры со статусом «Exited»

sudo docker rm $(sudo docker ps --filter status=exited -q)

Переименовать контейнер

sudo docker rename tst-apache2 container-apache2

Просмотр логов

sudo docker logs --follow %container_name%

Тома Docker

Docker том — это каталог файловой системы хост-машины, который монтируется к файловой системе
контейнера для обеспечения сохранения информации после, например, удаления контейнера.

Расположены тома в хостовой файловой системе в каталоге:

/var/lib/docker/volumes/%name%

Создание тома

из командной строки:

sudo docker volume create --name %volume_name%

из Dockerfile'а

VOLUME /var/lib/mysql

При этом создаётся новый том с именем из 64-х символов, данные в который копируются из
каталога хост-машины /var/lib/mysql.

Last
update:
2024/02/13
14:15

itechnology:web_develop:environment https://jurik-phys.net/itechnology:web_develop:environment

https://jurik-phys.net/ Printed on 2026/01/10 06:40

Удаление тома

подтверждения операции не будет:

sudo docker volume rm %vol_name%

Просмотр информации:

список томов:

sudo docker volume ls

подробности о томе:

sudo docker volume inspect %volume_name%

Монтировние тома

Для монтирования служит параметр –mount:

sudo docker run --mount src=%vol_name%,dest=%/path/in/container% %image_name%
or
sudo docker run -v %vol_name%:%/path/in/container% %image_name%

Часто используемые параметры –mount или -v:

type — тип монтирования (bind, volume или tmpfs);
src — источник монтирования (имя тома или пусть файловой системы);
dst — путь, к которому файл или папка монтируется в контейнере;
readonly — монтирует том, который предназначен только для чтения.

Очистка данных

Удаление неиспользуемых сетей

sudo docker network prune

Удаление всех неиспользуемых объектов:

sudo docker system prune

по умолчанию тома не удаляются:

sudo docker system prune --volumes

2026/01/10 06:40 11/12 Настройка окружения под Web

Jurik-Phys.Net - https://jurik-phys.net/

GUI для управления контейнерами

Docker Desktop c крупным набором нюансов при работе в Linux (ссылка);
Portainer;
Dockstation.

Dockerfile

Создание образа

Сценарий создания собственного Docker образа описывается текстовым файлом с именем «Dockerfile».

Создание рабочего каталога, содержащего Dockerfile:

mkdir -p ~/docker/project_name

Переход в созданный каталог:

cd ~/docker/project_name

Создание Dockerfile следующего содержания:

vim Dockerfile

Название базового образа
FROM debian:12.5

Скопировать содержимое текущего каталога
в каталог /opt/project_name образа
COPY . /opt/project_name/

Текущий каталог проекта
WORKDIR /opt/project_name/

Порт используемый приложением внутри контейнера
EXPOSE 7500

Запуск команды при запуске контейнера.
CMD /opt/project_name/project.elf

Более подробное описание инструкций доступно по ссылке.

Сборка образа

sudo docker build -t project_nave:version
...
...
...
Successfully built 53315083d9f8
Successfully tagged project_name:version

https://habr.com/ru/articles/760916/
https://docs.portainer.io/user/home/snapshot
https://dockstation.io/#screenshots
https://www.dmosk.ru/miniinstruktions.php?mini=docker-self-image#dockerfile

Last
update:
2024/02/13
14:15

itechnology:web_develop:environment https://jurik-phys.net/itechnology:web_develop:environment

https://jurik-phys.net/ Printed on 2026/01/10 06:40

Просмотр списка образов:

sudo docker images

Запуск контейнера на базе созданного образа:

sudo docker run -d -p 7500:7575 project_name:version

Здесь 7500 - порт приложения внутри контейнера, 7575 - порт приложения для внешнего
подключения т.е., вне контейнера.

Для отладки можно запустить командную оболочку контейнера:

sudo docker run -it project_name:version /bin/bash

Загрузка образа на Docker Hub

Для загрузки образа на Docker Hub необходимо авторизоваться:

docker login --username user_name

Сформировать правильный тег образа в виде <user_name>/<project>:<version>, который позволит
осуществить загрузку в требуемый аккаунт

sudo docker tag project_name:version user_name/project_name:version

На сайте https://hub.docker.com/ в разделе Repositories должен появиться загруженный образ
Теперь его можно везде загрузить и запустить:

sudo docker pull user_name/project_name:version
sudo docker run --name your-container-name -d -p xxxx:yyyy
user_name/project_name:version

xxxx - внутренний порт контейнера, yyyy - внешний порт.

From:
https://jurik-phys.net/ - Jurik-Phys.Net

Permanent link:
https://jurik-phys.net/itechnology:web_develop:environment

Last update: 2024/02/13 14:15

https://hub.docker.com/
https://jurik-phys.net/
https://jurik-phys.net/itechnology:web_develop:environment

	Настройка окружения под Web
	Node.js
	Node Version Manager
	Установка Node.js

	Docker
	Учебные материалы
	Основные компоненты и инструменты
	Безопасность
	Установка в Debian
	Шаг №1. Удаление версии из репозитория
	Шаг №2. Установка пакетов для работы с репозиториями
	Шаг №3. Добавление официального GPG ключа Docker репозитория в систему
	Шаг №4. Добавление репозитория в систему
	Шаг №5. Обновление списка доступных пакетов
	Шаг №6. Установка Docker'а
	Шаг №7. Проверка статуса Docker сервиса
	Шаг №8. Запуск первого контейнера

	Настройка
	Настройка Firewall
	Проверка проброса портов
	Проверка интернета в контейнере

	Реестр DockerHub
	Работа с docker-образом
	Работа с docker-контейнером
	Тома Docker
	Очистка данных
	GUI для управления контейнерами

	Dockerfile
	Создание образа
	Загрузка образа на Docker Hub

